首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   1篇
  国内免费   1篇
电工技术   1篇
化学工业   12篇
金属工艺   1篇
机械仪表   5篇
建筑科学   4篇
能源动力   5篇
轻工业   9篇
石油天然气   3篇
无线电   11篇
一般工业技术   13篇
冶金工业   5篇
自动化技术   9篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   6篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2004年   4篇
  2002年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1992年   1篇
  1984年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
For a wheeled mobile robot traversing a rough terrain, knowledge of terrain variables is very important for developing effective traction control algorithms. A key variable of the most prevalent information that should be taken into account is the contact angle between the robot wheels and the ground. This paper presents an algorithm for visual estimation of wheel-ground contact angle on uneven terrain. We call it the Visual Contact Angle Estimation (VCAE) method. Given a white LED light source, a monocular camera is required to be mounted on the front wheel and the rear wheel respectively, with a field of view containing the wheel-ground contact interface and its location relative to the wheel is known and fixed during robot travel. This arrangement is used to measure the contact angle with an edge detection strategy. Then a traction control methodology based on multi-objective optimization is presented. This exploits the wheel-ground contact angle obtained in the VCAE system to improve ground traction and reduce power consumption. Simulation and experiment results for a wheeled robot traversing a symmetrical uneven testbed demonstrate the effectiveness of the VCAE method and traction control algorithms.  相似文献   
2.
Load balancing is a crucial factor in IPTV delivery networks. Load balancing aims at utilizing the resources efficiently, maximizing the throughput, and minimizing the request rejection rate. The peer-service area is the recent architecture for IPTV delivery networks that overcomes the flaws of the previous architectures. However, it still suffers from the load imbalance problem. This paper investigates the load imbalance problem, and tries to augment the peer-service area architecture to overcome this problem. To achieve the load balancing over the proposed architecture, we suggest a new load-balancing algorithm that considers both the expected and the current load of both contents and servers. The proposed load-balancing algorithm consists of two stages. The first stage is the contents replication according to their expected load, while the second stage is the content-aware request distribution. To test the effectiveness of the proposed algorithm, we have compared it with both the traditional Round Robin algorithm and Cho algorithm. The experimental results depict that the proposed algorithm outperforms the two other algorithms in terms of load balance, throughput, and request rejection rate.  相似文献   
3.
Three types of mineral fillers, gypsum, wollastonite, and talc, were investigated for their ability to modify the mechanical properties of commingled recycled‐plastic composites containing 0.07–0.26 v/v of filler. Mechanical test results showed that the talc reinforced composites were significantly better in mechanical properties when compared with the gypsum and wollastonite composites. Scanning electron microscopy (SEM) showed that gypsum formed large agglomerates in the matrix. Interfacial adhesion between filler and matrix was evaluated using simple empirical models. To enhance the adhesion, talc, and wollastonite were pretreated with silane coupling agents, 3‐methacryloxypropyltrimethoxy silane (γ‐MPS) and 3‐aminopropyltriethoxy silane (γ‐APS). This did not result in any significant improvement to the material properties. The γ‐APS treatment, however, increased the tensile properties of the composites by ~ 5% when compared with the γ‐MPS treatment. The SEM investigations showed that the γ‐APS treatment provided better adhesion of filler particles and hence voids were less likely to form in the matrix when compared with the γ‐MPS composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
4.
Mechanical milling (MM) is referred to a solid state size reduction process where work materials in the form of coarse particulates are broken into the ultimate fineness by means of mechanical impact created by collisions of the work materials and the milling media which are placed inside a reciprocating vial. Many milling techniques have been so far developed to improve the process. However, the efficiency of MM process is still below satisfactory in terms of energy balance, where the energy consumed by the process of reduction is still very low compared to the energy supplied to perform the milling process itself. This contributes to high energy losses and proportionally to the span of processing time. Other major problems inherent in the process are contamination by the balls and the vial materials into the work materials, and process temperature that could influence the properties of milled materials. Since MM process utilizes the energy generated by impact upon the collisions of the balls against the work materials, it is important to understand the motions of the balls, the work materials, and the vial, which are the sources of the generation of impact energy. To obtain an optimized processing condition, the motions of vial and ball in relationship with the work materials should be designed in such a way to ensure the optimum impact energy is consumed by the work materials for the size reduction purposes. This paper presents a physical model for work materials, balls, and vial collisions based on different ways of motions. Using this model, higher impact could be achieved. These would lead to the reduction of milling time, contamination, as well as milling temperature.  相似文献   
5.
The design and first measuring results of an ultra-low power 12 bit successive-approximation ADC for autonomous multi-sensor systems are presented. The comparator and the DAC are optmised for low power consumption. The power consumption is 0.52 μW from a 1.2 V supply with a sample clock of 3.125 kHz and 0.85 μW at 6.25 kHz. This gives 136 pJ per conversion or 66 fJ per conversion step. As per authors’ knowledge, 66 fJ per conversion step is the best reported so far.The ADC was realised in the NXP CMOS 0.14 μm technology; the area was 0.35 mm2. Only four metal layers were used in order to allow 3D integration of the sensors.  相似文献   
6.
7.
A method is described for perceptually transparent data concealment and watermarking in audio. The proposed system replaces redundant and imperceptible frequency components with hidden data. A psychoacoustic model is used to identify suitable frequency locations for data hiding. Such a method is complicated by the windowing and overlapping requirements used for signal conditioning. The proposed system uses data flipping in place of windowing and incorporates a novel data detection scheme with adaptive weighting to increase the robustness of the watermark transmission. The resistance of the watermarking system to filtering, amplitude scaling and additive white noise is measured and results presented.  相似文献   
8.
OBJECTIVES: This study was undertaken to validate the in vivo intravascular ultrasound (IVUS) measurement of in-stent neointimal hyperplasia (IH) volumes. BACKGROUND: Because stents reduce restenosis compared to balloon angioplasty, stent use has increased significantly. As a result, in-stent restenosis is now an important clinical problem. Serial IVUS studies have shown that in-stent restenosis is secondary to intimal hyperplasia. To evaluate strategies to reduce in-stent restenosis, accurate measurement of in-stent neointimal tissue is important. METHODS: Using a porcine coronary artery model of in-stent restenosis, single Palmaz-Schatz stents were implanted into 16 animals with a stent:artery ratio of 1.3:1. Intravascular ultrasound imaging was performed at 1 month, immediately prior to animal sacrifice. In vivo IVUS and ex vivo histomorphometric measurements included stent, lumen and IH areas; IH volumes were calculated with Simpson's rule. RESULTS: Intravascular ultrasound measurements of IH (30.4+/-11.0 mm3) volumes correlated strongly with histomorphometric measurements (26.7+/-8.5 mm3, r=0.965, p < 0.0001). The difference between the IVUS and the histomorphometric measurements of IVUS volume was 4.1+/-2.7 mm3 or 15.8+/-11% (standard error of the estimate=0.7). Both histomorphometry and IVUS showed that IH was concentric and uniformly distributed over the length of the stent. Intravascular ultrasound detected neointimal thickening of < or =0.2 mm in 5 of 16 stents. Sample size calculations based on the IVUS measurement of IH volumes showed that 12 stented lesions/arm would be required to show a 50% reduction in IVUS-measured IH volume and 44 stented lesions/arm would be required to show a 25% reduction in IH volume. CONCLUSION: In vivo IVUS measurement of IH volumes correlated strongly with ex vivo histomorphometry. Using volumetric IVUS end points, small sample sizes should be necessary to demonstrate effectiveness of strategies to reduce in-stent restenosis.  相似文献   
9.
This paper presents the application of self-sensing actuation (SSA) to facilitate the implementation of piezoelectric actuator in an intelligent mechatronic system. SSA is a technique to employ smart materials, such as piezoelectric materials, simultaneously as a sensor and an actuator; thereby increasing the level of integration of the system. The piezoelectric actuator is equipped with an exclusive adaptive controller amidst its nonlinearities and system's disturbance. The application area to be discussed is a microdispensing system, which is an example of a micromanufacturing process, combining a fluidic system and a positioning system.  相似文献   
10.
In this study, a hydrothermal method was applied to synthesize the three-layer Aurivillius phase Sr2Bi2Ta2TiO12 (SBTTO) and Mn-substituted Sr1·5Bi2·5Ta2Ti0·5Mn0·5O12 (SBTTMO), with the use of NaOH as a mineralizer. The crystal structure, morphology, dielectric properties, and the correlation between the structural transformation and dielectric properties were investigated. The XRD data reveal that the SBTTO sample adopts a tetragonal crystal structure with the I4/mmm space group and is then transformed into an orthorhombic structure with the B2cb space group for SBTTMO. The morphology of both samples was observed by SEM, which showed anisotropic plate-like grains. With the Mn substitution, the ferroelectric transition temperature (Tc) significantly increases as the influence of the 6s2 lone pair of Bi3+ increases, and this in turn further induces the relaxor-ferroelectric behavior. Consequently, the increase in Tc confirms the structural transformation from the paraelectric-tetragonal to the ferroelectric-orthorhombic phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号